
Autonomous Neural Network Controller for

Adaptive Material Handling

N -ONR Contract No. N00014-91-C-0258

Quarterly Progress Report:
November 28, 1991 through February 28, 1992

Dr. James Kottas DTIC
Dr. Michael Kuperstein E L E I,.CT E

Symbus Technology, Inc. 3 APR 2 0 1992
325 Harvard Street IN

Brookline, MA 02146 o
Abstract

Current methods in motor control have problems dealing effectively with highly variable dynamic
inertial interactions between multijointed robots and payloads. We are developing an autonomous
neural network controller that can overcome these difficulties by learning to anticipate the inertial
interactions from its own experience. The neural network controller will allow robots to handle
diverse payloads in uncertain environments to benefit a wide variety of material handling
applications. Our target application is bin-picking, the grasping of an object from a bin containing
many randomly oriented objects and placing it at a desired location.

During this quarter of the SBIR Phase II contract, we focused on the dynamic control aspect of the
problem by extending our working implementation of the neural network controller from the Phase
I effort. Using a commercially available scara-type robot, we demonstrated a functional prototype
of the neural network controller for realizing point-to-point control. The controller design consists
of dynamic position and velocity servos in parallel with an adaptive neural network controller for
each joint. The controller adaptively learns to compensate for the dynamic inertial interactions with
different payloads through its own experience. Using two joints of the scara robot, the controller
achieved a position accuracy of 0.2% of the joint range, a timing accuracy of within 5% of the
requested movement time, and an end-point stability of within 8% of the maximum planned
velocity. This performance was measured on both joints after only 150 training iterations with a
movement that had large dynamic coupling forces between the scara links.

This d '. .t hC3G boea cPp:oved
for public release and sae; its
distribution is unlimite~

92-069799 I, u013 iIliiil~lllllllii~lll

Symbus Technology Autonomous Neural Network Controller

1. Introduction
For typical material handling applications in automation, 80% of the cost is required for
customized tooling in order to constrain both the handling process and part presentation. This
tooling is necessary to maintain very low tolerances between the expected material path and the
robots handling the material because current robot control technology cannot deal effectively with
variations in the workplace. Controllers which allow robots to be flexible and adaptable to changes
in the environment would significantly reduce the tooling cost.

For this research contract, we are focusing our development work on the problem of bin-picking.
In this application, a robot must pick out a single object from a bin containing many randomly
oriented objects and then place it at a desired location. For the robot to be flexible and adaptable in
doing bin-picking, it must be able to pick up and move a wide variety of objects with different sizes,
shapes, weights, and weight distributions. Then, the same robot could be used for most bin-picking
applications without requiring any customized tooling or reprogramming.

Bin-picking can be divided into five tasks:
I. Dynamic multijoint control. Moving a multijoint robot arm with or without an

object from one location to another introduces inertial interactions and dynamic
coupling between the joints. These dynamic effects are enhanced if the weight
of the object is comparable to or larger than the weight of the arm.

2. Object singulation. Given a bin of randomly oriented and overlapping objects,
the controller must be able to single out one of the objects and determine its ori-
entation and location in three-dimensional space.

3. Visually-guided reaching. Assuming the location and orientation of the object
has been computed, the controller must be able to move the gripper on the arm
from its current position to the object with the correct orientation in three-
dimensional physical space.

4. Sensor fusion of vision, tactile and force-feedback for gripping. Once the
gripper has been positioned very close to the object, these sensor modalities
must be analyzed in conjunction with each other in order to fine-tune the pro-
cess of gripping the object.

5. Holding and releasing the object. After the object has been gripped, the con-

troller may need to adjust the grip in order to prevent the object either from slip-
ping out during a fast movement or from being damaged by the gripper. In
addition, the controller also must sense the actual orientation of the object in the
gripper. Different orientations most likely will require different end points for
the movement in order for the object to be placed at its proper location with the .

correct orientation. _ *__
In this organization, each task presumes the previous tasks have been completed and are available.

During this quarter, we concentrated on the first task, dynamic multijoint control. The goal of this
task is to generate fast, accurate, and stable movements. However, the exact trajectory taken during
the movement is not critical. Thus, we are concentrating on a point-to-point control strategy.

Current control methods in industry rely mainly on proportional-integral-differential (PID) control.
Although simple, PID controllers have several shortcomings that prevent them from being useful
for general material handling applications. First, they must be tuned manually for any given type e.

of robot. This tuning results in a set of three parameters known as the PID coefficients. These A

Statement A per telecon Dr. Joel David

ONR/Code 1142
Arlington, VA 22217-5000

NWW 4/17/92

Symbus Technology Autonomous Neural Network Controiler

coefficients are used in the PID formulation to control the robot over its entire range of movement,
speed, and payload. However, the dynamic forces on the robot arm vary with position and payload.
Therefore, the PID coefficients must be selected with the most common movement range and
payload in mind. As a result, the performance of the robot over its full range of operation can be
reduced significantly. In material handling applications involving many robots, one slow robot can
create a bottleneck for the entire automation line.

In the regions of the robot range where the PIM coefficients are not well tuned, the robot arm can
exhibit several characteristics that further degrade the performance of the movements. With a
point-to-point control strategy, the main problem in realizing fast, accurate, and stable movements
is end-point oscillations. When a robot is carrying large payloads relative to its maximum payload,
a fast movement implies the robotic arm will develop a relatively large amount of momentum due

to the inertial qualities of the payload.1 This momentum can cause the arm to overshoot the desired
position and possibly oscillate about it. A stable movement is defined to be one in which the end
effector of the robot does not overshoot nor oscillate about the desired final position in physical
space. Similarly, an accurate movement is defined to be one in which the end effector stops within
an acceptable tolerance of the desired final position at the right time.

The goal for this quarter was to extend our dynamic control solution for obtaining fast, accurate,
and stable movements with a single joint robot to include multiple joints. The main issue to be
resolved here is the dynamic coupling between the joints. For any particular joint, the dynamics of
how that joint moves depends on where the other joints are and what they are doing. For N joints,
this problem is N-dimensional in complexity. The solution we seek must be as simple as possible,
rely on a minimum number of adaptable parameters and fixed constants, be insensitive to noise and
faults, operate autonomously (hands-off), and generalize to any robot with any number of joints
and degrees of freedom. Furthermore, the solution must be robust in that the adaptable parameters
are guaranteed to converge to values which always satisfy the desired accuracy and stability
conditions for the movement.

The robot used to develop the dynamic multijoint control formulation is a commercially available
American Robot model S-1400 and is depicted in Figure 1. It is a four-axis scara-type robot with
a maximum payload of 50 pounds. Only two axes were used for our initial demonstrations, the
shoulder joint (J1) and the elbow joint (J2). The links associated with these joints operate in a
horizontal plane. The other two joints were not powered. The shoulder joint is capable of moving
at speeds of approximately 8 feet per second and has a range of 300 degrees. Furthermore, it
contains a high-resolution optical encoder which provides 258,000 counts over the range for
accurate position and velocity information. A 386 PC computer communicates with the robot and
its drive electronics via a commercial data acquisition board (Data Translation model DT2812-A)
and an encoder board (Technology 80 model 5638).

Our dynamic multijoint controller is a biologically inspired control system with adaptable
parameters to govern the dynamics. The operation of the controller is feedforward at a high level
and feedback at a low level. The high-level feedforward aspect is due to the fact that the governing
parameters are computed before each movement. During a movement, these parameters are fixed
and local position and velocity feedback is used to allow the movement dynamics to emerge
naturally. At the end of the movement, the actual timing, accuracy, and stability are measured to
form an error criterion for adapting all the governing parameters. The accuracy error is a position
and time measurement and the stability error is a velocity measurement.

1. Even with no payload, a robotic arm can exhibit inertial effects when it is relatively heavy.

-2-

Symbus Technology Autonomous Neural Network Controllax

The dynamic multijoint controller is composed of identical local controllers for each joint that
receive global position inputs from all joints. Each joint controller is responsible for moving its
corresponding joint without any knowledge of the control signals being sent to the other joints. The
inputs to each joint controller are the desired movement time, the initial and desired final positions
for all joints, and a subjective measure of the current payload. The neural networks used in each
joint controller to store the adaptable parameters are structured to reduce considerably complexity
of the dynamic coupling problem without any loss of generality. The dynamic multijoint controller
is described in more detail in Section 2.

The approach of measuring the error information once for each movement is in contrast to current
adaptive methods for controlling robots. These methods are much more complicated than the
prevalent PID controllers. They involve one or more optimal criteria and need to update the
governing parameters during the movement to achieve the criteria. As a result, these methods
require much more computation power in order to sample the state of the robot's joints quickly. In
contrast, our approach is significantly less demanding computationally during the movement.
Instead, our high-level feedforward solution performs most of the computation before the
movement is started. The low-level feedback components (the local joint controllers) involve only
simple feedback and calculations at the joint.

In addition, the optimal adaptive control formulations are global methods in that the next motor
signal a joint receives during a movement depends upon the current states of all joints. Our joint
controllers are local and do not depend upon the other joints during a movement. A joint controller
only uses the initial and final positions of all joints before a movement to calculate the current set
of governing parameters.

Our experimental results with the dynamic multijoint controller are discussed in Section 3. We
implemented a simplified version of the controller which did not take into account variable
payloads at this time because we did not have any way to subjectively measure them during this
quarter. The results show that the controller learns to make accurate and stable movements very
quickly. The adaptable governing parameters converge onto their optimal values, albeit more

386PC

Figure 1: Schematic of the scara robot and its associated control hard-
ware used to develop the dynamic multijoint control formulation of
our neural network controller.

-3-

Symbus Technology Autonomous Neural Network Controller

slowly than the movement performance would suggest. This characteristic indicates the robustness
of the controller design.

2. Dynamic Multijoint Control Module
For a robot with N joints, the dynamic multijoint control module in the neural network controller
is composed of N local joint controllers, one of which is shown in Figure 2. Each local joint
controller operates in two modes, posture and movement. The role of the posture mode is to keep
the arm at its desired position, irrespective of gravity and payload. If a new desired position is set,
the posture mode will move the arm there with accuracy but not on time or with stability.
Movement mode is responsible for establishing the on-time arrival and the end-point stability.
These modes operate in parallel (additively) with the movement mode being activated when the
desired position changes.

The local joint controller has four inputs:
1. The initial position of each joint in the arm in joint space (as opposed to physical

space). These angles will be denoted by xio.
2. The desired position for each joint in joint space, denoted by Xid.
3. The desired movement time, Td.
4. A measure of the current payload, PL, This measure can be subjective and only

needs to be repeatable and monotonic with the payload's actual weight.
The first two inputs are used directly by the local joint controller and the second two inputs are used

Po sitoevo
x i t) xit

Xo Internal Position

Figure 2: Block diagr of a local joint controller. For a robot with N
joints, the complete dynamic multijoint control module of the neuralnetwork controller consists of N distinct local joint controllers. The

adaptable parameters are enclosed by horizontal ovals.

-4-

Symbus Technology Autonomous Neural Network Controller

only to compute parameter values.

To perform a movement, an internal estimate of the position and velocity is generated for the ith

joint according to

xi(t) = Tixsgn (xid - Xio) u(xi, 0, (1)

Pi = (["i(t)-XiOI [Xid - -i(t)] IU(Xi, 0, (2)
6 Xid -XO)2

where !~i(t) is the position estimate, i(t) is the velocity estimate, and Tix is the position integration

rate. The timing of the movement is governed by Ti,, which in turn depends on the desired move-

ment time. The function u(x i, t) is the local movement signal defined by

1 for xio < .ti(t) < Xid if (Xid > Xio),

U(Xi, t = 1 for Xid< ki(t) <Xio if (xid <Xio), (3)
0O otherwise.

This function is 1 when the movement mode parameters are to be active and 0 when only the pos-
ture parameters are in control.

The true velocity estimate dxi(t) is simply a constant value over some period of time. However,

this form does not acknowledge the inertial properties of the arm because it presumes a step change
in velocity is possible. The form for Vi(t) given above is parabolic and has a symmetrical bell-
shaped profile. This form is more realistic because it only presumes a step change in acceleration
is possible. The scale factor is needed in the parabolic (i(t) so that the velocity estimates integrates

over time to be xid- xio, the net change in position.

The position estimate is then used as the reference for a position servo, described by

T)i, Po(t = Pia [.Ii(t) - Xi(t)] + Pi (4)

where xi(t) is the current position of the joint, Pia is the position servo gain, and Pi, is a constant

bias to compensate for external forces such as gravity. This torque term constitutes the posture
mode.

The movement mode is composed of a velocity servo and an open-loop P controller. The velocity
servo is driven by the velocity estimate according to

i, Vel(t) = Via [(t) - vi(t)] , (5)

where vi(t) is the current velocity of the joint and Vi. is the velocity servo gain. While the position

and velocity servos operate relative to the estimated position and velocity, respectively, the open-
loop P controller is a simple spring-like restoring force that is relative to an absolute reference, the

-5-

Symbus Technology Autonomous Neural Network Controller

desired final position xid:

Ti, MOV (t) = Mia [Xid - Xi(t) + Mi (6)

where Mia is the gain (analogous to the stiffness of the spring) and Mip is a bias offset (the rest

position of the spring relative to the scaled desired final position). This control formulation is called
"open-loop" because the reference position is fixed during the movement.

The total torque signal that is sent to the motor amplifier, ti(t), is the sum of all the individual

torques with the movement mode terms being gated by the movement signal function:

Ti(t) = ri pos (t) + [i,V V(t) + "Ci, Mov(0] U(Xi,). (7)

The role of each term has physical significance. The position servo maintains the final position
accuracy but not the timing nor the stability. When the movement mode terms are active, the open-
loop P controller provides on-time arrival and stability. The velocity servo provides coordination
between the joints to compensate for the dynamic coupling forces to increase the stability of the
coupled joints. It is one way to deal with these forces, but not the only method.

At the end of the movement phase (signaled by u(x i, t) going from 1 to 0), the performance of the

movement is observed by each local joint controller. Three measurements currently are available:
1. The time when the movement phase ended, denoted by Ti .
2. The position of the joint, xim.
3. The velocity of the joint, Vim.

If the movement had some instabilities, the arm may still be in motion for some small amount of
time ifter the movement phase ended. When the arm finally stops moving (under the sole influence
of the posture mode position servo), a fourth measurement is available: the final position of the
joint, xif . These measurements translate into the following error quantities for each local joint con-

troller:
1. The arrival time error, ATi = Td - Ti.
2. The movement position error, AXim = Xid - Xim.

3. The movement velocity error, Avi. = Vid - Vim which equals -Vim since
Vid = 0.

4. The posture position error, Axif = Xid - Xif.

These errors can be used to adapt the parameters of the local joint controller.

In the most general form, the adaptable parameters are Ti., Pia, Pip, Via, Mia, and Mip. 2

Although several error functions are possible, the simplest ones that provided the fastest
convergence are:

8T =AT i, (8)

AXif AXijl > ef, (9)

S= {0 otherwise,

2. If desired, the scaling factor for the velocity estimate i(t) could be made adaptable in the manner of TiX.

-6-

Symbus Technology Autonomous Neural Network Controller

8 = Axif, (10)

Mia = -AVim, (11)

Mip Axim, (12)

where Ff is the error tolerance on the final position accuracy. During our experiments, Vi(was held

constant for simplicity so no error functions were explored yet.

Each adaptable parameter is encoded by a neural network. These error values are used to update
the weights in the respective networks. The basic network model used by all parameters is a
topographical map that is excited by a fixed bell-shaped activation function centered at the inputs
to the map. The output of the map is the sum of the weighted outputs of the map. This structure is
best illustrated using an example.

The position estimate integration rate (Ti,) depends only on the desired movement time'(Td) and

the initial (xi 0) and final (xid) positions of the movement. Since these three inputs are independent,

the corresponding map for Tix needs to have three dimensions. Let W represent the map so WjkI

denotes the neural weight at xi= , Xi = k, and Td = 1. Furthermore, let the bell-shaped

activation function be the three-dimensional Gaussian distribution,

g(j,k,l) = Cexpl (j--xi0) 2+ (k-Xid) 2 + (l-Td)2 (13)

L20F2 I

where C is a normalization constant and (Y is the half-width. The map output is computed using

Tix = III WJla g(j,k,l). (14)
j k I

Given the error signal 8T,., the map is adapted using

ARI Ak = iaTixg(j, k, 1) (15)

where A WkI is the change in the weight at index position (j, k, 1) and '1 is the learning rate.

The maps for the other parameters are slightly more complex in that there are more inputs. For
example, the posture parameters Pi. and Pip depend upon the current payload PL and the final

positions of all joints. The movement parameters Mia and Mip depend upon the movement time,

the current payload, and the initial and final positions of all joints. In general, the maps for
parameters like Mia and Mip could (N + 2)-dimensional. However, it is not necessary to relate the

initial position of joint i (xio) with the final position of joint n (Xnd). It is important, though, to

relate the movement of joint i (xio, Xid) with the movement of joint n (Xno, xnd). Thus, the (N + 2)-

dimensional maps can be reduced to a set of N two-dimensional maps that relate xio and Xid for

each joint and then have a separate two-dimensional map for the time and payload inputs. The

-7-

Symbus Technology Autonomous Neural Network Controller

output of all these maps can be summed together to form the desired parameter such as Mia. The

error value M is then applied to all the component maps in the normal way.

3. Performance Results and Discussion

Since the shoulder and elbow joints of our scara robot operate in a plane, there are no external
forces such as gravity acting on the arm. Therefore, Pip is fixed at zero for simplicity. Furthermore,

the position and velocity servo gains can be kept constant. However, because both joints have
significant friction and drag, the position servo gain Pia was changed from a constant to the

deterministic function Pia,(i(t) - xi(t)), where

Pia(X) 10 - 1601xI for 0: __Ix < 0.05, (16)
2 for IxI > 0.05.

The lower gain away from the desired position prevented oscillatory instabilities from appearing
during the movement (which also survive at the end of the movement). Conversely, the higher gain
near the desired position produced good position accuracy in the presence of the friction and drag.
If Pia(x) was to become adaptable, only the peak value at Pia(O) needs to be adapted.

The velocity servo gain was fixed at Via = 0.5. With Pia, Pip, and Via either fixed or functional,

the adaptable parameters were Tix, Mia, and Mip. These parameters are the key ones for governing

the timing and the stability of the movement. The learning rates for all their error values were set
to 0.5.

The arm was trained to going between two locations for 300 iterations (150 iterations per
movement). The results from one of these movements are shown in Figures 3-5. The results from
the other movements are similar. These two positions were chosen because they are representative
of the cases when the dynamic coupling forces between the links of the arm are the strongest. The
robot was trained successfully to move between multiple points to demonstrate the matrix idea of
maps for the movement parameters. For these movements, the desired movement time was set to
Td = 1 second and the payload was fixed at PL = 15 pounds.

The actual movement in physical space is illustrated in Figure 3. The path shown here is the one
taken by the arm after training was stopped. Note that the path is smooth but not linear in physical
space (and neither is it linear in joint space). This is quite satisfactory for the point-to-point control
strategy. The dynamic coupling forces are large in this case because the shoulder joint actually
helps to over-accelerate the elbow joint at the beginning of the movement. When the shoulder starts
to decelerate, it over-decelerates the elbow joint. For a smooth movement, the elbow joint must do
some braking at the beginning of the movement and some accelerating towards the end. If not, the
elbow joint will burst too greatly which induces oscillations in the elbow's trajectory. While the
path is not of concern, these oscillations cannot be compensated for simply by the open-loop P
controller. The velocity servo loop provides the necessary compensation.

The temporal evolutions of the trajectory for both joints is shown in Figure 4(a). All joint positions,
velocities, and torques have been normalized to their respective maximum ranges. The torque
profile for the shoulder joint reveals the intuitive situation , hereby there is an initial burst of

-8-

Symbus Technology Autonomous Neural Network Controller

Path Work envelope

Y (inches) Z

25

20

15

10

Initial position
-to." ".. /:o r

-15

0 ~ ~~ ~ ~

-20

-25
-25 -20 -15 -10 -5 0 5 10 15 20 25

X (Inches)

Figure 3: The trajectory of the sample arm movement in physical
space after training. The center of the robot is at (0,0).

positive torque to get the shoulder moving and then a gradual decrease to some negative torque to
provide the necessary braking. The effect of the open-loop P controller is to skew the velocity
profile slightly from its symmetrical velocity estimate, producing a shorter burst and a longer
brake. On the elbow joint, the effect of the coupling can be seen by the significant difference
between the estimated and actual velocity curves. The initial velocity burst is due to the coupled
acceleration of the shoulder joint. Similarly, the accelerating torque towards the end of the
movement is compensating for the coupled braking force from the shoulder.

The end points at t = 1 second show no noticeable position error but do have some finite velocity
error. The training evolution of these errors for both joints is shown in Figure 4(b). The position
error quickly goes to zero and averages within 0.2% of the total movement distance for both joints.
The velocity error, on the other hand, converges more slowly. It comes within 4% of the maximum
estimated velocity for the shoulder joint and within 8% for the elbow joint. In order to increase the
convergence speed, a larger learning rate could be used with the velocity error. In addition, a
velocity error threshold could be introduced that sets the maximum tolerable velocity error, below
which a zero error value would be generated.

The training evolution of the adaptable parameters for both joints is shown in Figure 4(c). Because
the velocity error had not converged to zero yet, the parameters have not converged completely, but
they are visually approaching asymptotes.

The evolution of the total training error is shown in Figure 5. This quantity, denoted by E1, is
defined to be the sum of all the error values over all adaptable parameters and all joints. It is a
measure of how quickly a particular movement has been learned from an external performance
viewpoint (rather than an internal parameter viewpoint). For the sample movement,

-9-

Symbus Technology Autonomous Neural Network Controller

Shoulder Joint (J1) Elbow Joint (J2)

Nornalizod AswUL&ds Normallzgd IhkpIiL~d%
2.00 .

1.50

1.25 4

-3.0 ... 2

0.-*0.5

0.4 -1.0.

0.50~0.

0.152t

0.00 ~ ... _ . .. 20
-0.05 .. . 0..- .0

-0.10 -30.1

0.0 0 0 0 00 10 10. 1600 2 4 0 90 00 1200 160
Tnieg (ec)~in Time~n (sec)~a

PaError Rplude Par metr &Wliw1de

050.6 TMa

0.4 0.5

0. (0.4....

0.3

02 -M(b) 0.2.

0.0 2m00:
-0.2 - 1 0.20

-0.4 0.

0 20 40 60 80 100 120 140 160 0 20 40 60 s0 100 in0140 160
TraiWing Ilerat ions Trainng ItaraLins

Para~e ~ adaptabled parameters.U~ud

1.0-10-

Symbus Technology Autonomous Neural Network Controller

Total Training Error
1.50

1.25

1.00

0 .7 51 .0 04

0 .25 :...E .i0.50

0.00

0 20 40 0 0 100 120 140 160

Training Iteralions

Figure 5: The evolution of the total training error.

2

Et= [I TJ + I ,, + IBM I]. (17)
i= 1

Note that even though the parameters have not converged fully yet, the total training error decreases
rapidly initially and then gradually thereafter. After the initial decrease, the movement visually
appears to be quite acceptable at the end point. During the remaining gradual error decrease, the
parameters are being adjusted to their final values by fine-tuning the movement's performance. In
practical terms, the final velocity goes to zero quickly after 1 second. The actual movement takes
about 1.05 seconds, resulting in at effective timing error of about 5%.

These plots demonstrate our initial success with the dynamic multijoint control module. However,
several compromises were made to simplify the model. First, the velocity servo gain was a
constant. Ideally, it should be adaptable but no suitable error function in terms of the end-point error
measurements could be found. Since the velocity servo compensates for extreme velocities during
the movement, it effectively is modifying the path. Since we have no direct path error information,
the error function could be some integral measure of a path quantity that is observed only at the end
point.

Another compromise was that a fixed payload was used. Since no force sensors were available on
the robot at the end effector, no measurement of the payload was possible. Similarly, a single
movement time was considered for each movement (although it could vary between different
movements). However, our goal is to handle any payload and any physically realizable movement
time.

To realize these capabilities with the dynamic multijoint control formulation, a two-pass training
approach can be used and the adaptable parameters can have additional maps with PL and Td as
their inputs. The output of these maps can be either additive or multiplicative with the total output
from the spatially-indexed maps (those whose inputs are the initial and final joint positions).
During the first pass, both the payload and the movement time are fixed. The robot is trained to
move between any number of locations and the spatially-irdexed maps are updated with the
appropriate error values. Then, a different payload and/or movement time is chosen and the training
is repeated between the same positions. However, the spatially-indexed maps are held constant this

-11-

Symbus Technology Autonomous Neural Network Controller

time and only the maps indexed by payload and movement time are updated with the corresponding
error values.

4. Future Work
Given our initial success with the dynamic multijoint control module of the autonomous neural
network controller, we plan to begin the second phase of the bin-picking problem (visually-guided
reaching). This process involves the following steps for the next quarter:

1. Extending the dynamic multijoint control module to handle six degrees of free-
dom and demonstrating dynamic control again. This step provides continuity
between robots and allows us to investigate error functions for making the
velocity servo gain adaptable. In addition, the revolute arm will be affected by
gravity, requiring the posture bias (Pip) to be adapted. It also allows us to add
variable payloads and timings to the dynamic control module.

2. Integrating the concepts associated with reaching in three dimensions as learned
by the INFANT model [Kuperstein 19911.

References
Kuperstein, M. (1991) INFANT Neural Controller for Adaptive Sensory-Motor Coordination,

Neural Networks, V4 pp. 131-145.

-12-

